
AC 2012-4602: IMPROVING THE STATE OF UNDERGRADUATE SOFT-
WARE TESTING EDUCATION

Prof. W. Eric Wong, University of Texas, Dallas

W. Eric Wong received his Ph.D. in computer science from Purdue University. He is currently a professor
and Director of International Outreach in the Department of Computer Science at the University of Texas,
Dallas. Prior to joining UTD, he was with Telcordia (formerly Bellcore) as a Project Manager for Depend-
able Telecom Software Development. Wong received the Quality Assurance Special Achievement Award
from Johnson Space Center, NASA, in 1997. His research focus is on the technology to help practitioners
develop high quality software at low cost. In particular, he is doing research in software testing, debug-
ging, safety, and reliability at the application and architectural design levels. Wong is the Vice President
for Technical Operations of the IEEE Reliability Society and the Secretary of the ACM Special Interest
Group on Applied Computing (SIGAPP).

c©American Society for Engineering Education, 2012

P
age 25.754.1

Improving the State of Undergraduate Software Testing Education

Software has become fundamental to our everyday life. Regardless of age, gender, occupation,

nationality, etc., each of us depends on software in some way, either directly or indirectly. Yet

software is far from defect-free and very large sums of money are spent each year only to fix and

maintain defective software. According to a study by NIST in 2002
3
, software bugs cost the U.S.

economy an estimated $59.5 billion annually (about 0.6% of GDP). The same study also found

that more than one third of these costs could be eliminated by an improved testing infrastructure.

Furthermore, these estimates have not taken into account any potential deaths or catastrophic

financial loss associated with the failure of mission-critical software. These figures would be

much higher if the study were conducted today.

A Deficiency Needs to be Corrected

Software testing continues to be the primary approach used to ensure the development of high

quality software. It is estimated that more than 60% of the cost of software development is spent

on testing and debugging. However, a large part of the problem is not as much the amount of

testing that is performed, as much as it is “who” the software is tested by, and “how” these

testers do it. Most of the personnel responsible for software testing are software engineers with a

very basic background in testing, mostly restricted to the application of a small set of testing

tools. A simple knowledge of a few testing tools cannot hope to substitute for a strong

foundation in software testing principles and methodologies. The fact is that a significant number

of the people responsible for testing the software that we rely on are not adequately prepared for

the task. If we were to trace this deficiency in software testing background back to its source, we

would end up at the educational institutions that are responsible for teaching and training people

to test software. Thus, if today’s software testers are not sufficiently armed with the knowledge

required to test software well, then it is most likely because they have not been adequately

trained. This is one of the main root causes of the current state of software testing, and it is

here that we need to begin to remedy the problem.

Current Approach

The subject of software testing rarely appears in the undergraduate curricula, despite its well

established place in classical computer science (CS) literature
2
 and its extensive use in industry.

Many academic CS programs only briefly cover software testing, limiting the topic to software

engineering (SE) courses
1
 that may not be mandatory for a CS degree.

According to a presentation at the Panel, Teaching Software Testing: Experiences, Lessons

Learned and the Path Forward, from CSEE&T 2011
6
, the number of undergraduate testing

courses offered in the USA is around 30, but the number of undergraduate CS programs in the

USA that require software testing is zero. One may argue that this statistic is based on a study of

the published undergraduate CS curricula, the results of which may not be entirely accurate.

Nevertheless, even if that is the case, it still provides a clear picture that very few (if any) CS

undergraduates are properly trained in software testing before graduation.

P
age 25.754.2

Another argument is that undergraduate SE programs, following the SWEBOK
5
, or the

undergraduate SE curriculum recommended by the ACM and the IEEE Computer Society
4
,

generally do teach software testing. However, we must recognize two important facts: (1) most

universities and colleges only offer undergraduate degrees in CS, not SE, and (2) for the majority

of software engineers, if they have a Bachelor’s degree, it is most likely in CS rather than in SE.

Besides, although some aspects of software testing may be covered, the actual application of

testing practices is not explored in-depth during the undergraduate education. Therefore, offering

a single elective SE-related course or covering the topic to some extent without providing

opportunities for students to actually make use of the knowledge in different settings is not a

good solution to the issue of software testing; these techniques require repeated practice before

they become second nature.

Our Approach

Software testing is an extremely broad subject, and even a dedicated one-semester course cannot

adequately cover all the important concepts and techniques with an appropriate level of detail, let

alone a course with a more general learning objective. Instead of only briefly covering software

testing (if at all) in one course, we need to teach this important topic from beginner programming

classes (e.g., CS 1336 − Programming Fundamentals, CS 1337 − Computer Science I, and CS

2336 − Computer Science II at the University of Texas at Dallas), followed by intermediate

courses (e.g., CS 3376 − C/C++ Programming in a UNIX Environment, and CS 4336 −

Advanced Java Programming), to a dedicated elective (e.g., CS and SE 4367 − Software Testing,

Validation and Verification) for more advanced techniques, and the final senior project (CS 4485

– the CS version of the capstone project course and SE 4485 – the corresponding SE version)

which provides students with an in-depth, hands-on experience in all aspects of software

engineering including how to effectively and efficiently test the software systems they produce.

By the end of the semester students should have a working knowledge of each individual aspect

of software engineering, and also have gained experience in how these aspects are related to, and

depend on, one another in order to successfully develop a software system. Through this process,

we can help students make software testing an integral part of their coding practice with the

understanding that testing cannot just be added on to the software at the last minute after it is

produced.

Currently, we are working on a TUES (Transforming Undergraduate Education in Science,

Technology, Engineering and Mathematics) Type II project funded by NSF to develop a set of

instructional materials in the form of course modules, not confined to a particular technique or

tool but generalized over different aspects of software testing.

We use a pedagogical model for teaching software testing at the undergraduate level with three

important concepts: many-to-many, minimally intrusive and non-restrictive. Our model

emphasizes a many-to-many relationship between courses and modules such that educational

materials can be selectively applied to any appropriate courses in a minimally intrusive and non-

restrictive way. A module can be used repeatedly in many courses but not necessarily in the

same breadth or depth as there is no need to cover all its topics within each course that employs

it, and a course can draw materials from multiple modules. Instructors have the flexibility to

P
age 25.754.3

either follow the suggested teaching outline or use their own discretion to determine which of the

topics are suitable, fine-tuning the course materials to make them more accessible and

understandable to their students. This also increases the effectiveness of the modules and

achieving the desired learning outcomes.

Seven Course Modules

The following is a description of seven course modules that are to serve as the instructional

materials for teaching software testing in multiple CS and SE undergraduate courses. Also

explained is the rationale behind the choice and design of each module, and the course(s) it

might apply to.

Module 1 – Software Testing Fundamentals: The must-knows of software testing

This module covers concepts that are essential to establishing a firm foundation in software

testing. Students are exposed to the idea of functional testing and how it can be applied at the

unit or the system level, thereby also introducing them to the concepts of unit testing,

integration testing, and system testing. Although this module is intended for courses such as CS

1336, 1337 and 2336, the techniques should be revisited and expanded upon whenever

appropriate.

Module 2 – Test Case Selection/Generation: Where do test cases come from?

This module covers materials on how effective test cases can be generated and why one test case

might be better than another. Students at the lower level courses (such as CS 1336 and 1337) are

introduced to the two most popular black-box requirements-based test generation techniques:

equivalence class partitioning and boundary value analysis. Students at the intermediate and

upper level courses (such as CS 2336, CS 3376, CS 4336, and CS/SE 4367) are introduced to

more advanced test generation techniques such as coverage-based adequate test set generation,

where the adequacy of a test set is measured against a criterion of interest. For example, the

criterion can be a black-box approach based on the functional requirements such that every

requirement has to be tested. It can also be input domain coverage-based testing, or a white-box

approach such as controlflow-based code coverage (e.g., statement and decision coverage) and

dataflow-based code coverage (e.g., c-use, p-use, and all-uses coverage). Tools are also

introduced, wherever appropriate, to the students.

Other topics to be covered in CS/SE 4367 (at the instructor’s discretion) include the following:

mutation testing – a fault injection-based technique that introduces simple syntactical changes

into the program, adaptive random testing – a technique to improve random testing by having

test cases as evenly spread over the entire input domain as possible, test generation from finite-

state models and formal specifications. Students are also to be exposed to state of the art

techniques in automatic test generation and some of the advantages and disadvantages of each.

Module 3 – Regression Testing & Test Minimization/Prioritization: Minimizing the expenses

Regression testing also known as program revalidation, is a testing process intended to check

that small changes made to one part of a program did not result in unexpected consequences in

another seemingly unrelated part of the program. This module discusses techniques for selecting

P
age 25.754.4

tests for regression testing. In particular, it focuses on test set minimization and test case

prioritization in order to maximize coverage and minimize test redundancy. One way to do the

minimization is to find a minimal subset of tests which gives the same coverage with respect to a

pre-selected criterion (e.g., the same statement coverage or the same decision coverage) as the

entire test set. For prioritization, test cases are ranked based on a suitable metric (e.g., based on

the statement coverage of each test).

This module also discusses the potential weakness of using minimization and prioritization for

selecting regression tests. Additional test selection techniques for regression testing are also

covered. Module 3 is most suitable for inclusion in the advanced programming course (e.g., CS

4336) and the undergraduate testing course (e.g., CS/SE 4367).

Module 4 – Quality Software Testing Documentation: Leave yourself more than a note

This module covers software testing documentation standards and the importance of creating

quality documents. Students are taught about the documents such as test plans, test requirements,

test case specifications, transmittal reports, logs, etc.

The amount of documentation required depends on the course and this decision is left to the

instructor’s discretion. In lower level courses (e.g., CS 1336 and 1337), students are required to

submit a basic test plan for some programming assignments including details such as a list of

functionalities that need to be tested, and how equivalence class partitioning and boundary value

analysis are used to help them generate test cases. Students in intermediate courses (e.g., CS

2336) will submit not just basic testing documentation but also test logs to ensure that each test

case was properly executed and the result was logged. In the software testing course (e.g., CS/SE

4367), students learn about standards such as IEEE 829-1998 for Software Test Documentation

and quality documentation practices such as version control, etc.

Module 5 – Advanced Software Testing: A deeper understanding of software testing

This module goes over advanced software testing techniques that are beyond the scope of the

materials covered in the lower and intermediate level courses. Suggested topics include, but are

not limited to, non-functional software testing such as performance testing (scalability, response

time, etc.), usability testing, security testing; Web-based; interface and GUI-based testing.

It should be emphasized however that this module has many advanced materials which may not

be suitable for all the students. We promote the idea of “fit-for-purpose” usage of the module by

only selecting appropriate topics at the instructor’s discretion for students in a specialized

software testing course (e.g., CS/SE 4367), a senior software engineering project course (e.g., CS

4485 and SE 4485), or those who are taking independent study with a topic on software testing.

The ultimate goal is to promote further research in software testing and to encourage students to

pursue related studies in graduate school.

Module 6 – Efficient and Effective Testing Tools: There is no need to do it all manually

In addition to teaching students about the fundamentals of software testing, we also want to make

sure the students are exposed to useful software testing tools that are used both in academia and

industry. Once the strong background in software testing has been created, the use of tools is also

P
age 25.754.5

important to reduce the manual labor involved. We will provide a set of appropriate tools for

each testing technique and a description of the limitations as well as advantages and

disadvantages of each tool. However, the choice of which tool(s) to be used is left up to the

discretion of the instructor. This module can be used in courses such as CS 4336, CS/SE 4367,

CS 4485, SE 4485, and others as appropriate.

Module 7 – Integrated Solutions for Testing, Debugging and Profiling: The wealth of

dynamic information in a test case

The dynamic information collected during test case execution can be used for several important

purposes. Students learn about how runtime trace information collected in the form such as

statement coverage reports can help programmers quickly find where the bugs are using state of

the art fault localization techniques. The concept of code profiling is also explained in detail and

students learn how to use tools to investigate program behavior in terms of performance analysis

in order to understand which portions of code can be optimized.

Concepts from this module can be taught in upper level course such as CS 4336, CS/SE 4367,

CS 4485 and SE 4485.

Relationship between Courses and Modules

Having described each module, we now use Figure 1 to illustrate how different courses can apply

the same module and how a module can be used by different courses. “NR” implies “not

required,” and “based on instructors’ discretion” implies that each instructor can determine,

using their own judgments, which suggested topics from the modules are appropriate for their

students. Also included in Figure 1 is the pre-requisite relationship between different courses that

are discussed in this paper.

(a) Many-to-many relationship between courses and modules

P
age 25.754.6

(b) Course pre-requisite relationship

Figure 1. The relationship between courses and modules,

and the pre-requisite hierarchy between courses

Implementation and Findings from the First Project Year

We have adopted the approach described above using the course modules developed by our

TUES project. During the first year, five faculty members and two graduate students in the CS

Department at UTD participated. A sequence of four courses was selected: CS 1336, CS 1337,

CS 2336, and CS 3376. Each course is a prerequisite of its successor with CS 1336 specially

designed for students with no prior computer programming experience, and as such cannot be

used to satisfy degree requirements for majors in CS or SE. For the first two courses, materials

from a module on black-box requirements-based testing were used, while materials from an

additional module on white-box code coverage-based testing were also used for the latter two.

A special lecture on these testing materials (ranging from 30 to 50 minutes) was given to

students in each of these classes which did not cause any significant disruption of the course. The

same concepts were also repeatedly explained by the instructors, whenever appropriate,

throughout the entire semester. Overall, following the minimally intrusive concept discussed

earlier in Our Approach, instructors did not find it to be overly difficult to include the testing

materials in their courses, nor did it adversely affect their ability to adequately teach their own

materials. PowerPoint slides of our testing lectures are available at the project website

http://paris.utdallas.edu/CCLI. Not only students in the selected courses, but also others who did

not attend the lectures in software testing can take advantage of this resource and continuously

use it as a reference when testing their software.

The two graduate students as special teaching assistants (in addition to the regular TAs for those

courses) provided extra recitation sessions and tutoring to students who needed additional help in

understanding and applying the materials discussed in their classes.

Starting from Fall 2011, one additional faculty member at UTD and one at Collin County

Community College have also adopted our approach and the course modules. This has an impact

on students who take CS 3376 at UTD and COSC 2336: Programming Fundamental III – C++ at

P
age 25.754.7

Collin College. The collaboration between UTD and Collin is vital as the latter is a two-year

community college in the Dallas metropolitan area serving about 53,000 credit and continuing

education students each year and the first among the Texas community colleges to allow students

to apply to a university pre-admission program, in which credit could be earned both at Collin

and a major university at the same time. Many of its students, after one or two years of study,

transfer to UTD for their Bachelor's degree, it is therefore extremely important that these

students receive the same background during their freshman and sophomore years as our own

students.

Students in these selected courses (each of which has multiple sections except for CS 3376 and

COSC 2336) were required to turn in a test plan explaining how their programs were tested for at

least one programming assignment. Questions on software testing were also included in the

midterm and/or final exams to evaluate students' learning of the principles and techniques for

software testing, discussed in the testing modules presented to them.

More than 800 undergraduates have benefited since the commencement of our project. From the

test plans students submitted for their programming assignments, it is very clear that the majority

of the students understood the equivalence class partitioning (ECP) and boundary value analysis

(BVA), and were able to select appropriate inputs using these two techniques. This observation is

also supported by the exam scores for the question on software testing.

An anonymous evaluation (using the questionnaire in Figure 2) was conducted at the end of each

semester. Depending on the materials covered in each class, some questions were removed from

the survey. Figure 3 and Figure 4 present the results based on the feedback from students in CS

1337 and CS 2336, respectively. Similar data was also obtained for other classes but not included

due to the space limit.

Questions Rating

4 – Strongly agree

3 – Agree
2 – Disagree

1 – Strongly disagree

1. You will test your programming assignments before you submit them

2. It is important to conduct a good testing on your programs before they are

submitted for grading

3. The testing techniques discussed in class are appropriate for students in your class

4. The testing techniques discussed in class are easy to use

5. The testing module presented in class helps you better understand the Equivalence

Class Partitioning technique

6. The testing module presented in class helps you better understand the

Boundary Value Analysis technique

7. The testing module presented in class helps you better understand the

Statement and Decision Coverage techniques

8. The Equivalence Class Partitioning technique can help you better select test

inputs from different parts of the input domain

9. The Boundary Value Analysis technique can help you select input values to detect

bugs at or near the boundaries of different equivalence classes

10. The Statement and Decision Coverage techniques can help you select input values

to cover statements and decisions that have not been covered, and increase the

probability of detecting hidden bugs

 P
age 25.754.8

11. You are able to perform and demonstrate the Equivalence Class Partitioning

technique

12. You are able to perform and demonstrate the Boundary Value Analysis technique

13. You are able to perform and demonstrate the Statement Coverage technique

14. You are able to perform and demonstrate the Decision Coverage technique

15. You will apply the testing techniques which you have learned to other

programming assignments, whenever appropriate

16. Software testing should become an integral part of a student’s coding practice

Figure 2: Questionnaire for students’ survey

On a scale of 1 (strongly disagree) to 4 (strongly agree) with 3 as (agree), the average scores for

understanding ECP and BVA are around 3.4 (with the majority either strongly agreeing or

agreeing that our testing module presented in class helps them better understand software testing

techniques), and for being able to apply these techniques to test generation are around 3.2.

Although the difference is small, it seems that there are some students who could understand the

principles of the techniques, but were not able to effectively use them. As heavily emphasized in

our previous discussion, becoming skilled in any of these testing techniques requires repeated

practice. This outcome supports our claim.

4 3 2 1

1 71 14 0 0 3.835

2 74 11 0 0 3.871

3 43 40 2 0 3.482

4 32 46 7 0 3.294

5 35 42 7 1 3.306

6 34 43 8 0 3.306

8 32 45 8 0 3.282

9 43 37 5 0 3.447

11 20 46 16 3 2.976

12 28 43 14 0 3.165

15 48 33 4 0 3.518

16 57 27 1 0 3.659

4 3 2 1

1 71 14 0 0 3.835

2 74 11 0 0 3.871

3 43 40 2 0 3.482

4 32 46 7 0 3.294

5 35 42 7 1 3.306

6 34 43 8 0 3.306

8 32 45 8 0 3.282

9 43 37 5 0 3.447

11 20 46 16 3 2.976

12 28 43 14 0 3.165

15 48 33 4 0 3.518

16 57 27 1 0 3.659

“It is important to conduct

a good testing of your

programs before they are

submitted for grading.”

“You will apply the testing

techniques which you have

learned wherever

appropriate.”

“Software testing should

become an integral part of

student’s coding practice.”

Figure 3. Quantitative feedback from students in CS 1337.

Questions 7, 10, 13 and 14 are not suitable students in CS 1337.

4 3 2 1

1 39 7 3 0 3.73

2 41 8 0 0 3.91

3 25 22 2 0 3.47

4 15 28 6 0 3.18

5 20 26 3 0 3.35

6 23 22 4 0 3.39

7 22 22 4 1 3.33

8 21 25 3 0 3.37

9 23 22 4 0 3.39

10 26 21 2 0 3.49

11 22 22 5 0 3.35

12 21 25 3 0 3.37

13 14 29 6 0 3.16

14 15 27 6 1 3.14

15 28 15 5 1 3.43

16 35 12 2 0 3.67

4 3 2 1

1 39 7 3 0 3.73

2 41 8 0 0 3.91

3 25 22 2 0 3.47

4 15 28 6 0 3.18

5 20 26 3 0 3.35

6 23 22 4 0 3.39

7 22 22 4 1 3.33

8 21 25 3 0 3.37

9 23 22 4 0 3.39

10 26 21 2 0 3.49

11 22 22 5 0 3.35

12 21 25 3 0 3.37

13 14 29 6 0 3.16

14 15 27 6 1 3.14

15 28 15 5 1 3.43

16 35 12 2 0 3.67

Students at this level are

more mature, and can

better demonstrate the

testing techniques.

Figure 4. Quantitative feedback from students in CS 2336

P
age 25.754.9

Regarding the white-box code coverage-based testing techniques, since it is more advanced than

ECP and BVA, it follows our prediction that students had more trouble understanding and

applying statement and decision coverage. This is also supported by the results of our evaluation

conducted at the end of the semester.

We also noticed that students in CS 3376 were more mature that those in CS1336, 1337 and

2336 at UTD and COSC 2336 at Collin, and could better demonstrate the testing techniques

discussed in class.

Other important findings for all the sections include

 “It is important to conduct a good testing of your programs before they are submitted for

grading” (Question 2) has a score of at least 3.87.

 “You will apply the testing techniques which you have learned wherever appropriate'”

(Question 15) has a score of 3.43 or higher.

 “Software testing should become an integral part of student's coding practice” (Question

16) has a score of 3.66 or higher.

Below is some qualitative feedback based on the written comments submitted by the students.

 From CS 1337 class: “I found that by the time I got into CS 1337, I was already

practicing some of the techniques without knowing the technical reasons for them.”

This suggests that students seem to intuitively apply testing techniques in an ad hoc

approach, but not in a systematic way with a complete understanding.

 From CS 2336: “I think that there should be a stronger emphasis on testing earlier in the

learning process (e.g., CS 1336 & CS 1337). I also believe that testing should play a

bigger part in programming courses in general.”

This shows that students realize the importance of software testing and agree that when

they begin writing code for their programming assignments, testing should be an integral

part of their practice.

 From CS 3376: “I feel that more time should have been given to this. Creating software is

pointless if you don't know how to test it. The materials are very applicable to real world

situations.” “This knowledge helps me enforce my testing practices and make sure they

are complete.”

This indicates that students at this level are already evaluating the real world applicability

and usefulness of these techniques.

From the above data, it has been shown unanimously across all the sections of every class

participating in our project that students understand the importance of software testing and intend

to use the techniques to help them improve the quality of their programming assignments.

P
age 25.754.10

Additional Ongoing Assessments

To supplement our assessments measuring how effectively our approach has been implemented

and how well our course modules have been put to use (such as the qualitative feedback from the

students and the quantitative data collected from the anonymous survey, presented above), we

also focus on evaluating whether our goals and objectives have been met. These metrics may

include the number of students that keep up good testing practices in later years, or the number

of errors made by students in programming assignments given in future courses.

In order to understand the impact of this project and rule out other alternative explanations, we

will utilize direct observation methods and holistic rubrics to assess students learning outcomes.

We will also compare the quality of software testing skills and knowledge of our participant

study cohort group in Senior Design Project with non-cohort group’s testing performance

utilizing various statistical methods and models, e.g., Repeated-Measures ANOVA, Structural

Equation Modeling. These comparisons will allow us to examine the effects of this project, and

also provide evidence of its impact. Furthermore, we will track the progress of our then-alumni

cohorts to evaluate the overall outcomes of the project. In addition, we will seek feedback from

industry advisors on how our alumni cohort group performs software testing.

Conclusion

We have observed that many undergraduates do poorly on their programming assignments when

they fail to adequately test their code. They run the programs on a few randomly selected data

sets; things that are easy to type; numbers for which the results are easily calculated. They do not

use a logical, common sense approach for testing their programs. This is most likely because

students are not taught the strategies that we as instructors consider simple logic until they take a

software testing related course. Such a course (e.g., CS/SE 4367 at UTD), if offered at all, is

usually an upper-level course students take after they complete the basic programming sequence

(such as CS 1336, 1337 and 2336).

In order to fix this problem, we emphasize that software testing principles and techniques should

be covered at appropriate stages of the undergraduate CS and SE education. This should be done

in multiple years and different courses from the freshman introductory programming class

(instead of postponing until sophomore, junior, or even senior years) for the most fundamental

testing techniques such as Boundary Value Analysis and Equivalent Class Partitioning to the

capstone project class, which gives students an opportunity to apply their knowledge in software

testing to a semester-long group-based project sponsored by our industry partners. Only by doing

so will students adopt software testing as an integral part of their coding practice to effectively

produce more reliable software.

The evaluation will be conducted continuously to monitor activities that involve project

implementation for further refinements and continuous improvement. We will use quantitative

and qualitative data, and direct indicators (e.g., number of instructors using our modules and

number of students learning software testing before graduation). The overall impact of our

approach will be evaluated after our student cohorts finish their college education and enter the

workforce. This will be done through a longitudinal study by monitoring and tracking our then-

P
age 25.754.11

alumni cohorts who attended classes covering software testing as undergraduates. We are

confident that even a partial success will cascade into software development and manifest itself

in the form of lower software defect rates and software maintenance costs.

Acknowledgment

This work is supported by the National Science Foundation's Transforming Undergraduate

Education in Science, Technology, Engineering and Mathematics (TUES) program (formerly

Course, Curriculum, and Laboratory Improvement (CCLI) program) under Award No. DUE-

1023071.

Any opinions, findings, and conclusions or recommendations expressed in this paper are those of

the author and do not necessarily reflect the views of the National Science Foundation.

References:

1. Janzen, D. and Saiedian, H., “Test-driven Development: Concepts, Taxonomy, and Future Direction,” IEEE

Computer, 38(9): 43–50, September 2005.

2. Myers, G. J., Sandler, C. (revised by), Badgett, T. (revised by), and Thomas, T. M. (revised by), The Art of

Software Testing, 2nd Edition, John Wiley & Sons, June 2004
3. National Institute of Standards and Technology, “The Economic Impacts of Inadequate Infrastructure for

Software Testing,” NIST Planning Report 02-3, May 2002

4. Leblanc, R., Sobel, A., Diaz-Herrera, J. L., and Hilburn, T. B., “Software Engineering 2004 − Curriculum

Guidelines for Undergraduate Degree Programs in Software Engineering,” The Joint Task Force on Computing

Curricula, IEEE Computer Society, Association for Computing Machinery, August 2004

5. SWEBOK: Guide to the Software Engineering Body of Knowledge

(http://www.computer.org/portal/web/swebok)

6. Wong, W. E., Bertolino, A., Debroy, V., Offutt, J., and Vouk, M., “Teaching Software Testing: Experiences,

Lessons Learned and the Path Forward,” in Proceedings of the 24th IEEE-CS Conference on Software

Engineering Education and Training (CSEE&T 2011), Honolulu, Hawaii, May 2011

P
age 25.754.12

